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FOREWORD

The problem of estimating a probability density function is addressed in this report. The
algorithm presented here is the kernel estimation method using a resistive grid network suitable for
hardware implementation. Results show that the linear Resistive Grid Kernel Estimator (RGKE)
yields estimates that are comparable to those formed using a Gaussian kernel. It will also be
shown that incorporating the inherent nonlinearities of the RGKE allows the detection of
discontinuities in the density function.

This work has been supported by a number of sponsors and has been conducted in the
Space and Ocean Geodesy Branch.

This report has been reviewed by Dr. Richard A. Lorev, Head, Space and Ocean Geodesy
Branch and James L. Sloop, Head, Space and Surface Systems Division.

Approved by:

R. L. SCHMIDT, Head
Strategic Systems Department
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ABSTRACT

The ability to estimate a probability density function from random data has applications in
discriminant analysis and pattern recognition problems. A resistive grid kernel estimator (RGKE)
is described that is suitable for hardware implementation. The one-dimensional linear RGKE is
compared to a kernel estimate using Gaussian kernels, and simulations are presented using both
continuous and quantized data. The nonlinear form of the RGKE is shown to have desirable
properties, such as the ability to detect discontinuities in the density function.
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INTRODUCTION

In this report, the problem of estimating the probability density function f(x) of a given
sample of n real observations X1, ..., Xn will be considered. The approach studied here is the
kernel estimator from Silvermanl using a kernel that can be implemented by a resistive grid
network.2 A discussion of kernel estimates and their application to neural networks can be found
in Specht, 3 and a review of research concerning pattern classification is presented in Lippmann.4

It will be shown qualitatively that using the linear resistive grid kernel estimator (RGKE) provides
results comparable to an estimate formed using a Gaussian kernel. Results using the nonlinear
RGKE will illustrate the ability of the resistive grid to detect discontinuities in the density. Finally,
conclusions and possible applications will be discussed.

CONTINUOUS RGKE

The resistive network described in Mead 2 provides a means of computing the weighted
average of many input signals or observations. The voltage at a node is determined by the
weighted average of the inputs. Since the amplitude of the voltage due to a single input decreases
exponentially with distance, signals that are farther away will carry less weight. A schematic of the
one-dimensional resistive network is shown in Figure 1.* The equation for the general univariate
kernel estimator of constant window width h is

f(x) = I I K _

where n is the number of data points, h is a smoothing parameter, and K denotes a kernel. For a
one-dimensional continuous resistive network, the following equation can be used as the kernel
centered at y

Ix-yI 1
KRG(Y)=Ae L L=,

where L is the characteristic length, R is the resistance, G is the conductance, and A is a
normalization constant. In this case, the characteristic length L can be identified with the window
width h. The normalized voltage at each node of the resistive network described in Mead 2

determines the estimate of the density function.

Figure 2 shows a comparison of kernel estimates of a normal density using the continuous
RGKE and Gaussian kernels for various window widths.5 It can be seen from these plots that, as
expected, the RGKE yields a density estimate similar to one using Gaussian kernels.

All figures are included after the References.
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Since the continuous RGKE is a bounded Borel function satisfying the following
conditions

I KRG =(x)x <10

f KR0 (x)dx = 1

IxKRo(x)l-- 0, lxi -*

with h -+ 0 and nh -- cc, then the estimatefRG(X) - f(x)

in probability as n - 00.1

DISCRETE LINEAR RGKE

When implementing the RGKE, it is necessary to consider quantized inputs. 2 The
probability density estimate for the k-th node of a discrete network is given by

N

RG = AjMi~
i - kI

i=1

where Mi is the number of observations in bin i, A is a normalization constant, N is the number of
nodes, and

. 1 1 1--- i
2LT L V 4I.,

The expression for y' becomes exact as the number of nodes in the discrete network approaches
infinity. This equation is valid under the assumption that linear superposition holds.

To simulate the linear RGKE, 10,000 data points are drawn from a quantized normal
density with zero mean and variance one, similar to that shown in Figure 3. The probability
density function is then estimated only at the centers of the bins. Figure 4 illustrates the estimate
from a discrete linear resistive grid with a characteristic length of 5.0. This shows that the RGKE
can yield a smooth density estimate of the data.

A discontinuity is introduced in the data to evaluate the performance of the linear discrete
RGKE. This is illustrated in Figure 5a, which clearly shows the edge in the data. The estimates
from the RGKE for different values of L are shown ir Figures 5b through 5d. As these plots
show, by decreasing L the discontinuity can be detected. However, smoothness in the estimate is
lost when the characteristic length is made small enough to detect discontinuities in the data. This
fundamental tradeoff in the choice of the smoothing parameter L is an inherent characteristic of
linear kernel estimators.

2
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DISCRETE NONLINEAR RGKE

The above equations for continuous and linear discrete RGKE allow for a development of
the theory with respect to kernel estimators. However, including the nonlinearities of the network
in the formulation has some benefits. It can be shown that the following equations govern the
voltage at the i-th node of a resistive grid network when linearity is not assumed:

+V.I Vi+l

ViGV! 1  + -iI Ri-1  R1  P
G~ + I + 1 in =1 iVi = G, 1 + VinfM

Ri-.. R1

with

RoVi i-V i

Ri= R 2
tahVi+ I V i

tanh 2

where p is a scaling factor controlling the degree of nonlinearity, V n is the fixed input voltage to
the i-th node, and Ro is the zero signal resistance value. Again, the estimate of the density function
is given by the voltages at each node

fNLRG, = N

vi

This set of coupled nonlinear equations is applied to the discontinuous data of the previous
section. Again, a histogram of the data is shown in Figure 6a. Figures 6b-d illustrate the
probability density estimates for different degrees of nonlinearity. A value of 0.2 for 13 yields
results similar to the linear case; the curve is very smooth and no discontinuity is detected in the
density. However, as more nonlinearity is allowed, the discontinuity in the density becomes
apparent. With 0 = 1.0, the curve remains smooth while the discontinuity in the density function is
clearly shown. Thus, the inherent nonlinearity in a RGKE can actually improve its probability
density functional estimator qualities.

CONCLUSIONS AND APPLICATIONS

This study has shown qualitatively that the RGKE yields results comparable to probability
density estimates derived using Gaussian kernels. The ability-of the nonlinear RGKE to detect
discontinuities in the density, while continuing to produce a smooth function, illustrates its
usefulness as an estimator. Since the RGKE is suitable for hardware implementation, it is possible
to apply it to problems in discriminant analysis and pattern classification when real-time responses
are required.

3
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FIGURE 1. SCHEMATIC OF RESISTIVE GRID NETWORK
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FIGURE 2. COMPARISON BETWEEN AN ESTIMATE USING GAUSSIAN
KERNEL (SOLID) AND RESISTIVE GRID KERNEL (DOTIED)
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